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1. Introduction

This work describes a correspondence between two gravitational systems: Choptuik scaling

and the “merger” transition in the black-hole black-string system.

Choptuik scaling [1] describes the famous phenomenon observed (in numerical simula-

tions) at the threshold for black hole production in a spherically symmetric gravitational

collapse. At threshold, also known as criticality, the solution approaches an attractor solu-

tion as one approaches the space-time point where the black hole is “marginally” formed.

The observed independence of initial conditions (as long as one tunes one parameter for

criticality) is known as “universality”. The solution has discrete self-similarity, known as

“echoing”, with scaling constant denoted by e∆, and it exhibits a “critical exponent”, γ.

See also the review [2] and references therein.

The merger transition originates in the black-string black-hole transition, which occurs

whenever extra compact dimensions are present (see [3], the review [4] and references

therein). Instead of analyzing the full time-evolution during phase transition it suffices, for

purposes of determining the end-state, to consider only stable static solutions, and it turns

out to be convenient to consider unstable static solutions as well. For “phase conservation”

reasons it was first predicted [3] and recently numerically confirmed [5] that there exists

a path of solutions joining the branch of increasingly non-uniform black-strings with the

black hole branch. Locally, at the point of minimal horizon radius, or “waist”, a topology

changing transition occurs, where not only the horizon topology changes, but actually the

manifold topology changes as well (at least in the Euclidean, Wick rotated solutions, gotten
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DSSCSS

Figure 1: An illustration of a continuously self-similar geometry (CSS), which we often call a cone,

and a discretely self-similar geometry (DSS).

from the static solutions). This transition was called “merger”, since it can be thought to

describe the merger of a large enough black-hole into a black-string.

After reviewing the Choptuik and merger systems in section 2, it is shown in section 3

that the two are closely related, as anticipated in [3] (p.21 bottom of page), and more

recently in [6]1 in connection with double analytic continuation (see [7, 8] for related dis-

cussions) of D-branes. In both systems space-time is effectively 2d after accounting for

symmetry, and once the Choptuik scalar in d dimensions is interpreted as arising from a

Kaluza-Klein reduction in D = d + 1 dimensions, they are seen to have the same matter

content. Moreover, I show that once one performs a double analytic continuation the two

systems have precisely the same action. It should be noted however, that the two analytic

continuations are of a different character: one is trivial in the sense that the fields do not

depend on the rotated coordinate, while the other is non-trivial, involving an essential

coordinate, one which the fields depend on, and the success of the rotation (reality of the

solution) relies on the fields being even in that coordinate.

In order for the solutions to correspond under double analytic continuation, it is not

enough that the actions coincide (and therefore the equations of motion) but the boundary

conditions (b.c.) must correspond as well. In both cases we are seeking a local solution

near a point-like singularity. In Choptuik it is the marginal black hole and in the merger

it is the marginally pinched horizon. Locality means that all scales are forgotten near the

singularity and thus scale periodicity is a common b.c. Alternatively, the periodic b.c. may

be replaced by the attractor mechanism where in both cases it is necessary to fine-tune

one parameter — in Choptuik it is the initial imploding wave while in the merger it is a

b.c. such as the temperature that parametrizes the curve of solutions. These are boundary

conditions along the “scaling direction”, but we still need b.c. along the “tangential”

direction. There one actually finds two kinds of b.c., and in this respect the two systems

differ.

Self-similar solutions, such as the critical solutions discussed here, can be either Contin-

uously Self-Similar (CSS) or Discretely Self-Similar (DSS). CSS solutions return to them-

selves after rescaling by any constant and a cone is a good mental picture for them, while

DSS solutions are invariant only by a rescaling by a specific rescaling factor (and its power)

and can be represented by a wiggly cone with logarithmically periodic wiggles (see figure 1).

In subsection 3.4 we discuss CSS solutions and especially the evidence [22] for the double-

1I thank Nissan Itzhaki for introducing me to the observation made in that paper.
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Merger Choptuik Critical Collapse

(Essential) Signature Euclidean Lorentzian

Boundary condition Reflection Axis regularity

Self Similarity of critical solution Continuous2 Discrete

Table 1: A summary of the differences between the critical merger solution and the critical Chop-

tuik solution.

cone (which is CSS) being the critical merger solution. That leads to an interpretation of

the complex exponents that appear in the perturbations of the double cone [3] as critical

exponents of the merger system. The real part is predicted to be related to the critical

exponent γ, which sets the dimensions of the off-criticality parameter (p − p∗), while the

imaginary part is predicted to be related to the critical exponent ∆. In critical collapse,

on the other hand, the critical solution is DSS. While there ∆ manifests itself as the log-

periodicity of both the critical solutions and the Gundlach-Hod-Piran (GHP) oscillations of

off-critical quantities, for the merger we predict the latter without the former. Altogether,

the scaling constants γ, ∆ are shown to combine naturally into a single complex number

related to the perturbative exponents, the precise relation being (3.16), which generalizes

the well-known connection of γ with the linearized analysis (2.11).

The differences between the merger system and the Choptuik critical collapse are

summarized in table 1. Some implications are discussed in section 4. Briefly, they are

• A prediction of GHP oscillations in the merger system.

• The cone provides a prediction of the critical exponents ∆, γ and a critical dimension

D∗ = 10 for the merger (3.19), (3.21).

This prediction has some analogy with [9, 10] which analytically estimate the critical

exponents of Choptuik scaling by analyzing perturbations around the CSS Roberts

solution [11] in 4 and higher dimensions, respectively.

• Perhaps there are similarities between the solutions and scaling constants of the two

systems as they differ only by a change of b.c. and therefore perhaps some results

would carry over from the merger to the standard Choptuik system.

Distant outlook. Finally, I would like to discuss some general but non-rigorous lessons

• Choptuik scaling is well-known to be very similar to conformal field theories, as it

exhibits scale invariance and critical exponents. Equipped with the modern perspec-

tives of holography, and the duality between 2d gravity and matrix models, I find it

suggestive to predict that quantum gravity near the singularity (for both the spheri-

cal collapse and the merger) is described by some (yet unknown) large N conformal

matrix model.

• The time evolution during the Gregory-Laflamme decay inevitably leads to a pinching

singularity with high energy effects, irrespective of the (low energy) initial conditions.

2Direct evidence is lacking so far.
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It is very probable that this singularity would exhibit scaling as well. In that sense it

is a manifestation of self-organized criticality. It would be interesting to understand

the critical phenomena near this singularity which distinguishes itself by involving

three essential coordinates — (r, z, t), rather than two (see [12] for a simulated time

evolution).

2. Review

We start by reviewing the two concepts to be linked in this work.

2.1 The merger transition

As reviewed in the introduction the merger transition originates in the black-string black-

hole transition, which occurs whenever extra compact dimensions are present (see [3], the

review [4] and references therein). The merger transition is the local topology change at

the “waist” as one moves from an unstable black-string to an unstable black-hole.

The system. One considers black objects in a flat D-dimensional space-time background

R
D−2,1 ×S1, where the compact coordinate is denoted by z and its length is L : z ∼ z +L

(see figure 2). The matter content is pure gravity and the action is the standard Einstein-

Hilbert action SD = 1/(16πG)
∫

R
√

gdDx.

The black objects are spherical and static, namely the isometry is SO(D− 2)Ω ×U(1)t
(“static” means also time reversal symmetry). The most general metric consistent with

this symmetry is

ds2 = −e2 A dt2 + ds2
(r,z) + e2 CdΩ2

D−3 , (2.1)

where all fields are defined on the Euclidean (r, z) plane, ds2
(r,z) is an arbitrary metric on

the plane and since the metric is static an analytic continuation t → it is trivial and we

may freely switch between the Euclidean and Lorentzian signatures.

Altogether the problem is defined in the Euclidean (r, z) plane and the field content

is a 2d metric and two scalars A, C. That means that we can write down a 2d action for

these fields without loosing any of the equations of motion. The action is

S =
β L

4GD

∫
dV2 eA+2C ·

·
[
R2 + (D − 3)(D − 4) e−2C + (D − 3)(D − 4) (∂C)2 + 2(D − 3) (∂A)(∂C)

]
(2.2)

where R2 is the 2d Ricci scalar and dV2 :=
√

g2 dr dz is the volume element. The total

number of fields is 5. Two fields may be eliminated by a choice of coordinates in the plane

which leaves us with three fields.

The double-cone. Intuitively the transition from black string to black hole involves a

region where the horizon becomes thinner and thinner as a parameter is changed until

it pinches and the horizon topology changes. This region is called “the waist” and this

process is described in the upper row of figure 3 using the (r, z) coordinates defined in

figure 2. It is important to remember that all metrics under consideration are static and

that they change as we change an external parameter, not time.
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Figure 2: Definition of coordinates for the merger system. For backgrounds with a single compact

dimension the essential geometry is 2d and Euclidean after suppressing the time t and angular

coordinates in the extended dimensions. The cylindrical coordinates (r, z) are defined such that

z ∼ z + L is the coordinate along the compact dimension and r is the radial coordinate in the

extended spatial directions. Locally at the “pinching singularity” we define another set of local

coordinates (ρ, χ) (defined only for ρ ≤ L/2), which are radial coordinates in the 2d plane with

origin at the singularity. We shall sometimes call ρ a “scaling coordinate” and χ “tangential”.

S
2

S
D−3 r

z

Figure 3: The merger transition. A black string (left) turns into a black hole (right) as the waist

pinches. Shaded regions are inside the horizon and the dashed line is a boundary far away. The

singular configuration is a cone over S2 × SD−3 — the double-cone.

A topological analysis [3] indicates that the local topology of (Euclidean) spacetime is

changing, not only the horizon topology. Moreover, the topology change can be modeled by

the “pyramid” familiar from the conifold transition (see the lower row of figure 3). By the

nature of topology, in order to change it there must be at least one singular solution along

the way (with at least one singular point). The simplest possibility, which is also realized

in the conifold is to assume that the the singular topology is the cone over SD−3 × S2,

which we term the “double-cone”.

It is easy to write down a Ricci flat metric for the singular solution, which is moreover

continuously self-similar (CSS).3 The metric is

ds2 = dρ2 +
ρ2

D − 2

[
dΩ2

S2 + (D − 4) dΩ2
SD−3

]
, (2.3)

3We shall freely interchange the terms “cone” and “CSS”.
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where the ρ coordinate measures the distance from the tip of the cone, which is the only

singular point, and the constant pre-factors are essential for Ricci-flatness.

It turns out that the double-cones may have oscillating perturbations and that their

existence surprisingly depends on a critical dimension D∗ = 10 [3]. The relevant mode is

a function ε(ρ) which inflates slightly one of the spheres while shrinking the other. The

ansatz for the perturbation is

ds2 = dρ2 +
ρ2

D − 2

(
e2 ε/2 dΩ2

S2 + (D − 4) e−2 ε/(D−3) dΩ2
SD−3

)
. (2.4)

A priori one could start with two separate scale functions, one for each sphere, but a

constraint relates them as above.

Considering the zero mode for ε, namely linearized deformations around the double-

cone, one finds from the equations of motion for the ansatz (2.4)

ε = ρs±

s± =
D − 2

2

(
−1 ± i

√
8

D − 2
− 1

)
. (2.5)

The imaginary part, =(s), causes the oscillations. For D ≥ D∗ := 10 we see that s±
become purely real, namely D∗ = 10 is a critical dimension.

2.2 Choptuik scaling

Consider the threshold for black hole production. It is a co-dimension 1 surface (or “wall”)

in the space of initial conditions of any gravitational theory. “Choptuik scaling” is the term

for the critical phenomena physics at this threshold. Here we shall review the basic system

where the famous discoveries of Choptuik were made through computerized simulations of

spherical collapse [1] and describe its salient features. More information, and a survey of

other systems can be found in the excellent review [2].

The system. One considers an implosion of a spherical shell. There is a small price to pay

for the high degree of symmetry - the shell cannot be made of gravitational waves (which

do not possess an S-wave due to their spin 2). A simple choice for the matter content is a

single scalar field, Φ. Thus the action is taken to be

SChoptuik =
1

16π GN

∫ √−g ddx

(
R +

1

2
(∂Φ)2

)
(2.6)

Spherical symmetry means that the essential coordinates (upon which the fields de-

pend), (r̃, t̃) parametrize a 2d Lorentzian plane (see figure 4). We use tilded coordinates for

the Choptuik solutions to distinguish them from the untilded coordinates for the merger.

Then one considers a family of initial conditions parametrized by some parameter

p. For instance, one could take a family of Gaussian-profiled scalar waves, or any other

profile, with p being proportional to the initial amplitude. For small enough p the linear

approximation is valid, and by superposition the waves go through the origin and “reflect”

– 6 –
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Future
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*

past horizon

future/ Cauchy horizon
t

r
~

Singularity − O

Figure 4: Definition of coordinates for spherical collapse system and Choptuik scaling (based

on [13, 14]). The essential coordinates (r̃, t̃) parametrize a 2d Lorentzian plane after suppressing

the angular coordinates. The scaling direction is along lines of fixed t̃/r̃ and may be parametrized

by ρ̃2 := r̃2 − t̃2. z̃ parametrizes an additional dimension, the dimensional uplift of the scalar field

Φ. The domain is made out of three patches: the past patch, bounded by the r̃ = 0 axis and

the past horizon, the outer patch bounded by the past and future horizons and the future patch

bounded by the future (Cauchy) horizon and the axis. The critical solutions is periodic on smaller

and smaller scales as the singularity is approached. One period is denoted by the line-filled (blue)

region and a second one is denoted by a shaded (green) regions. The pattern continues towards the

singularity.

back to infinity. For large enough p a black hole forms. Thus, for any such family the

threshold of black hole formation defines a critical value of the parameter which is denoted

by p∗. Naturally, the value of p∗ depends on the chosen family.

Main results. It was found that this system displays universality, namely, some properties

are independent of the chosen family of initial conditions. There are two main universal

quantities

• The critical exponent γ.

• The log-periodicity ∆.

The critical exponent. Consider the black-hole mass as a function of p, namely MBH =

MBH(p). For p < p∗ MBH = 0 while for p > p∗ MBH > 0 and thus p = p∗ is a non-analytic

point of this function. It turns out that for p & p∗

MBH ' (p − p∗)
γ . (2.7)

where γ is a universal critical exponent. In 4d [13]

γ ' 0.374 . (2.8)
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Echoing and log-periodicity. For p = p∗ there is a special point in space-time where the

black-hole is “just almost” being created. Clearly it is at r̃ = 0 and we might as well shift

t̃ so that it has t̃ = 0. Let us denote this point by O. As the simulation approaches O the

solution starts repeating itself on shorter scales and on shorter times. More precisely the

solution approaches the “critical solution”, Z∗, independently of initial conditions, and Z∗

is discretely self-similar (DSS) with O being its fixed-point.

In pictures, DSS means that the space looks like an inhomogeneous cone - a cone that

was deformed in a periodic manner, see figure 1. In formulae, DSS means that there is

a transformation on space-time x → x′ = f(x) such that the solution is invariant up to

rescaling

g′µν(x) = e−2∆ gµν(x)

Φ(x′) = Φ(x) + κφ , (2.9)

where g′ is the induced metric gµν → g′µν(x) = f∗(gµν)(x′). The scalar field allows for a shift

constant κφ consistent with DSS, but in the Choptuik critical solution, κφ = 0 “for unknown

reasons” [2]. In standard coordinates f is conveniently given by f(r̃, t̃) = (e−∆ r̃, e−∆ t̃),

or equivalently ρ̃ → e−∆ ρ̃. The log-period ∆ was numerically measured in 4d to be

∆(d = 4) ' 3.45 . (2.10)

See table 2 for a collection of these and other measurements.

Continuous Self Similarity (CSS) would mean for a geometry to have a transformation

satisfying (2.9) for all ∆, and that κφ = const ∆.

Universality is a consequence of Z∗ being an attractor on the co-dimension 1 surface

in phase space. Actually, for DSS the attractor is a “limit-cycle”.

Discovering “echoing” required special determination and high-quality numerics, since

it was necessary to follow the solution for several periods, each period lasting a factor of

e∆ ' 30.

Analogy with second order phase transitions. The two phenomena of critical exponents and

scale invariance are the hallmark properties of second order phase transitions in field theory

(for instance, the Curie transition in ferromagnetic materials, or the liquid-gas critical

point). There the critical point is described by a Conformal Field Theory that looks the

same on all scales. If one deviates from the conformal point the power law behavior of

correlation functions is replaced by a finite correlation length. Critical exponents appear

which are related to the dimensions of certain operators in the conformal point. Moreover,

reaching the CFT requires tuning some control parameters, much as the Choptuik solution

is gotten after fine-tuning the initial conditions. Despite this strong analogy with CFT,

a CFT is not known to appear in Choptuik scaling. Given the modern perspective of

Holography via the AdS/CFT correspondence and the duality of 2d gravity and matrix

models, it is natural to predict that the critical solution is dual to a large N conformal

matrix model.

– 8 –
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Other results. To date there has been little analytic understanding of γ, ∆. The main

information added is the relation

γ = 1/λ0 (2.11)

where λ0 is the unique negative eigenvalue of the critical solution. The reason that there

is such a unique eigenvalue is that Z∗ being an attractor throughout the co-dim 1 black-

hole-threshold “wall” is stable to all perturbations within the wall (stability means positive

eigenvalues), but is unstable against a deviation outside of it.

The point O is a naked singularity. O is singular as an immediate consequence of

the scaling symmetry - as we get closer to O the curvature scales up and is unbounded in

its neighborhood. Moreover, there is no horizon yet as we are at the threshold of black

hole formation4. This teaches us that naked singularities are generic at co-dim 1 in phase

space, and the celebrated Cosmic Censorship conjecture must be amended to read “no

naked singularities will form for “reasonable” and generic initial conditions”.

The behavior of MBH around p∗ gets a sub-leading periodic correction in DSS

log(MBH) = γ log(p − p∗) + c + fGHP (γ log(p − p∗) + c) , (2.12)

where fGHP is a universal function (our notation, GHP, stands for Gundlach-Hod-Piran [13,

15]) with period ∆, while c depends on initial conditions.

Another peculiar phenomenon is that when one inspects the metric alone, without the

scalar field, one finds that the log-frequency doubles, namely the log-period for the metric

is ∆/2. For the scalar field, on the other hand, only odd frequencies are present.

3. The correspondence

In this section the central claim is stated:

Claim: The critical merger solution in D dimensions corresponds after a double analytic

continuation to a variant of the critical Choptuik solution in d = D − 1 dimensions but

with different b.c.: time reversal symmetry replaces axis regularity.

In order to prove this claim we first demonstrate that the actions are the same up to

a double analytic continuation, and therefore the equations of motions are identical. Then

we analyze the boundary conditions to show that the solutions are identical as well.

3.1 The action

We first verify that both actions are defined in the same dimension and with the same

matter content, and then we proceed to consider their form. Both actions are essentially

2d once symmetry is accounted for: in spherical collapse the two essential coordinates are

the Lorentzian (r̃, t̃), while in the merger they are the Euclidean (r, z). The matter content

in d dimensional spherical collapse is d dimensional metric plus a scalar field Φ, which is

exactly the matter content of D = d + 1 gravity in the merger system once a dimensional

reduction over the time coordinate is performed (the Kaluza-Klein vector field vanishes

due to time reversal symmetry).

4However, it is not implied that the Cauchy horizon is met by a static asymptotic observer at finite time.

– 9 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
7

The precise form of the action is identical as well, since the scalar obtained from

dimensional reduction is minimally coupled, exactly as in (2.6). In order to exhibit the

precise relation between the fields we proceed to perform this dimensional reduction in the

standard way

ds2
D = e2 A dt2 + d̃s

2

d (3.1)

the action is S = 1/(16πGd)
∫ √

gdd
dx eA R̃d where Gd = GD/L and after Weyl rescaling

ds2
d = e2 A/(d−2) d̃s

2

d (3.2)

one obtains

S = 1/(16πGd)

∫ √
gdd

dx

(
Rd −

d − 1

d − 2
(∂A)2

)
(3.3)

finally one may rescale A to obtain a canonically normalized Φ,

Φ =

√
2(d − 1)

(d − 2)
A , (3.4)

yielding the action for spherical collapse (2.6), up to the different signatures (and a signature

related sign). Alternatively, in the spherical collapse we may consider Φ, the dilaton, to

arise from a dimensional reduction over an additional dimension, which we parametrize by

z̃ (and is analogous with t in (3.1) ).

Moreover, the isometries of spherical collapse and of the merger are identical:

SO(D − 3)Ω × U(1)t ≡ SO(d − 2)Ω × U(1)z̃ .

More explicitly, it is standard to give the ansatz for spherical collapse as

ds2
d = −α(r̃, t̃)2 dt̃2 + a(r̃, t̃)2 dr̃2 + r̃2 dΩ 2

d−2

Φ = Φ(r̃, t̃) . (3.5)

When compared with (2.1), (3.1) we see that in the standard ansatz the gauge freedom is

used to set

eC+ 1

d−2
A → r̃

ds2
t̃,r̃

→ −α(r̃, t̃)2 dt̃2 + a(r̃, t̃)2 dr̃2 . (3.6)

3.2 Boundary conditions

In order to fully define the solutions we must supply boundary conditions. For the Choptuik

solution the b.c. are

• In the scaling direction (ρ̃ - see figure 4 the evolution leads to the critical solution,

as one evolves towards the singularity due to the solution’s attractor nature. It was

shown [16, 13] that the attractor mechanism could be replaced by periodic b.c.

• In the “tangential” direction (such as r̃ for Choptuik) the b.c. are regularity on the

r = 0 axis and analyticity on the (past) horizon.

– 10 –
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When the global properties of the Choptuik solutions were analyzed [13, 14] it was

found that the standard solution in the “past” patch could be smoothly continued into

the “outer” patch (see figure 4) for the definition of these patches) delineated by the past

and future horizons. However, the continuation of the standard Choptuik solution is not

analytic on the future horizon. This raises the possibility to define a different “tangential”

b.c.: analyticity on both future and past horizons in the outer patch, or alternatively time

reversal symmetry and horizon regularity. We term the solution obtained with these b.c.

“time-symmetric Choptuik” or “TS-Choptuik” for short.

For the critical merger solution the b.c. are very similar

• In the scaling direction (ρ) we expect an attractor at criticality, or equivalently self-

similarity and periodicity.

• In the “tangential” direction, χ or z, the boundary conditions are reflection symmetry

z → −z or alternatively χ → π − χ, together with regularity on the horizon, namely

that as χ → 0 there is no conical deficit angle in the Euclidean geometry.

We see that the Choptuik and merger critical solutions have the same b.c. in the scaling

direction, but different ones in the tangential direction: Choptuik has axis regularity while

the merger has time reflection symmetry.

Thus, the merger becomes the TS-Choptuik after the following analytic continuation

z ↔ i t̃

t ↔ i z̃

r ↔ r̃ . (3.7)

While the second analytic continuation is trivial as the fields do not depend on this co-

ordinate, the first is non-trivial as it involves an essential coordinate (z or t̃) and it is

crucial that the fields are even in that coordinate in order to retain reality after analytic

continuation. For example for the scalar field Φ(−t̃) = Φ(t̃) and hence Φ is a function of t̃2

(namely, there exists some real analytic function Φ̂ such that Φ(t̃) = Φ̂(t̃2)) and analytic

continuation sends t̃2 → −t̃2 keeping the function real (namely Φ̂(t̃2) → Φ̂(−t̃2)).

Comments:

1. In all cases there are two boundaries in the tangential direction: axis and horizon. So

far we paid most of the attention to the axis, while the boundary conditions on the

horizon were always “regularity”. Note however, that “regularity” of the horizon has

two different meanings: in the Lorentzian case it means that one can pass smoothly

to Kruskal-like coordinates, while in the Euclidean we have the “no deficit angle”

boundary condition for the scalar field that plays the role that gtt has in ordinary

static geometries.

2. I find it likely, though not self-evident that solutions of “standard” spherical collapse

respect a r̃ → −r̃ symmetry. It is certainly obeyed by smooth spherically symmetric
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scalar fields in a flat background, but the extension to curved space-time is not

obvious to me. If this reflection symmetry does indeed exist then the Choptuik

critical solution can be analytically continued via r̃ ↔ i r, z̃ ↔ i t, t̃ ↔ z to a variant

of the merger where the z-reflection b.c. is replaced by an axis regularity b.c. at

r = 0.

3.3 An example

Here I give an explicit example for the correspondence (double analytic continuation) be-

tween a merger metric5 and the corresponding TS-Choptuik metric.

Consider the metric for a cone over S2 × SD−3 (2.3). Identifying the coordinates χ, t

as in [3] and working with a Lorentzian metric we get the merger-type metric

ds2 = dρ2 +
ρ2

D − 2

[
dχ2 − cos2(χ) dt2 + (D − 4) dΩ2

SD−3

]
, (3.8)

where χ was chosen in a slightly non-standard way to belong to the range −π ≤ χ ≤ π such

that the ZZ2 symmetry reflection symmetry acts simply as χ → −χ and t was identified

such that the metric is independent of t and moreover gtt vanishes at the boundaries of

χ (the horizon). Now we perform the double analytic continuation (3.7) appropriate for

the time-symmetric case, where χ plays the role of z (the coordinate with the reflection

symmetry) and find

ds2 = dρ̃2 +
ρ̃2

D − 2

[
−dt̃2 + cosh2(t̃) dz̃2 + (D − 4) dΩ2

SD−3

]
. (3.9)

Finally, performing a dimensional reduction over z̃ according to (3.3) with

e2A = ρ̃2 cosh2(t̃)/(d − 1), d = D − 1, and then normalizing Φ according to (3.4) we get

ds2 =

(
ρ̃2 cosh2(t̃)

d − 1

)1/(d−2) [
dρ̃2 +

ρ̃2

D − 2

(
−dt̃2 + (D − 4) dΩ2

SD−3

)]

Φ =

√
2(d − 1)

d − 2

(
log(ρ̃) + log(cosh(t̃)) − 1

2
log(d − 1)

)
. (3.10)

We note that the metric in the ρ̃, t̃ plane (the outer wedge in figure 4) is conformal to the

Rindler metric, namely a wedge in 2d Minkowski space.

3.4 Cones and GHP oscillations

The action and boundary conditions are (continuously) scale invariant. Therefore it is

natural to start by looking for continuously self-similar (CSS) solutions, also known as

cones. The most general CSS ansatz is

ds2
d = e2 Bρ(χ)

(
dρ + ρ Â(χ) dχ

)2
+ ρ2 e2 Bχ(χ) dχ2 + ρ2 e2 C(χ) dΩ 2

d−2

Φ(ρ, χ) = κφ ρ + Φ(χ) (3.11)

5[22] gives significant evidence that this is actually the critical merger solution, namely the attractor.
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where all fields Bρ, Bχ, Â, C,Φ depend only on χ. Examples of cones include the double-

cone (2.3) and the Roberts solution [11]

ds2 = −du dv + r̃2(u, v) dΩ2

r̃2(u, v) =
[
(1 − p2) v2 − 2 v u + u2

]

Φ =
1

2
log

(1 − p) v − u

(1 + p) v − u
, (3.12)

where p = 1 is a critical value.

Assuming that the double cone is indeed the critical merger solution [22], the exponents

s (2.5) which appear at the linearized level can be interpreted as follows. Take (2.5) and

perform two substitutions. First substitute ε → δp := p − p∗ for the deviations from the

double cone. Second, replace ρ → ρ/ρ0 in order for the expression to be dimensionally

correct, and ρ0 will be interpreted as a length scale characteristic of the smooth cone, for

example, ρ−2
0 could be a measure of its maximal curvature. The result is

δp ∼ (ρ/ρ0)
s ∼ ρ−s

0 . (3.13)

Therefore

ρ0 ∼ δp−1/s. (3.14)

In the theory of critical collapse an analogous relation defines the critical exponents γ,∆

ρ0 ∼ δpγ(1±i 2π/∆) , (3.15)

where ρ−2
0 is a measure of the maximal curvature above or below criticality, and ∆ is the

log-period of the GHP oscillations. Normally one writes only the real part of the exponent

ρ0 ∼ δpγ and (3.15) is a compact form which includes also the GHP oscillations. Moreover

for critical collapse ∆ measured from GHP oscillations is the same as the log-period of the

critical (DSS) solution, Z∗.

Comparing (3.13), (3.15) we find that s is a complex quantity which naturally combines

the two scaling constants γ, ∆ through

−1

s
= γ

(
1 ± i

2π

∆

)
. (3.16)

Therefore

γ = −<
(

1

s

)
(3.17)

2π

∆
=

=(1/s)

<(1/s)
. (3.18)

Combining (3.17), (3.18) with the explicit expressions for s (2.5) we may predict off-

critical oscillations for the merger at D < 10, with the following critical exponents

γ =
1

4
(3.19)

2π

∆
=

√
10 − D

D − 2
, (3.20)
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while for D ≥ 10 there are no oscillations and the critical exponent γ becomes

γ = − 1

s+
=

1

4

(
1 +

√
D − 10

D − 2

)
, (3.21)

where s+ was substituted in (3.17) since it is leading for large ρ.

Equation (3.17) may be compared with (2.11), the well-known connection in the theory

of critical collapse.

4. Consequences and indications

The correspondence outlined in the previous section suggests certain new directions for

numerical work.

• Predictions for off-critical oscillations and for the scaling constants of the

merger for D < 10.

Off-critical oscillations in the merger system are predicted to be analogous with GHP

oscillations [13, 15] in critical collapse. The predicted values of the two scaling con-

stants are given in (3.19), (3.20).

Suggested numerical experiment. Measure the scaling constants γ,∆ from off-critical

merger solutions for various dimensions D < 10, improving on the pioneering work

of [17, 18]. According to (3.15) γ may be defined through the maximal curvature as

one goes off criticality, exactly as in Choptuik scaling, and ∆ is defined such that the

period in log δp is ∆/γ.

• Critical dimension D∗ = 10 for merger, and a prediction for γ.

For D ≥ D∗ = 10 GHP oscillations are predicted to cease to exist as a consequence

of the property described around (2.5). The prediction for γ becomes (3.21).

Suggested numerical experiment. Seek the off-critical behavior for the merger in

dimensions D ≥ D∗ = 10.

• Possible similarity between Choptuik scaling and the merger.

The merger and Choptuik systems were shown to have the same action after ana-

lytic continuation, but different boundary conditions. At the time when this paper

was conceived, the data regarding the Choptuik scaling constants in various dimen-

sions was scarce, and seemed to compare surprisingly well with the prediction for

the merger (3.20): the predicted ∆ for merger is ∆|D=5 = ∆|D=7 = 4π/
√

15 ' 3.24

while the available ∆’s for critical collapse were ∆(4d) ' 3.45, ∆(6d) = 3.03 [19]

and d = D − 1 (the available data at the time is summarized in table 2). That

led to the suggestion that perhaps the change in boundary conditions would af-

fect the scaling constants only weakly, making the Choptuik constants always close

to (3.17), (3.20), (3.21). Moreover it suggested the possibility that critical dimensions

which are known for the merger system [3, 20] will appear in Choptuik scaling as well.
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∆ γ

4d 3.45 0.374

6d 3.03 0.424

Table 2: Scaling constants for the Choptuik critical collapse in 4d [1] and 6d [19] which were

available at the time this paper was conceived. ∆ is the log-period, and γ is the scaling exponent.

By now a strikingly precise determination of ∆(d = 4) is available: ∆(d = 4) ' 3.445452402(3) [14].

In higher dimensions γ is defined such that M ' (p − p∗)
γ (d−3), namely, (p − p∗)

γ has length

dimension 1. For newer data in various dimensions see [21].

Inspired by these ideas and motivated by the apparent success of the estimates in

4d, 6d Sorkin and Oren set out to measure the scaling constants γ, ∆ for critical

collapse in d ≤ 11 [21] (see [23, 24] for previous attempts). They succeeded and their

interesting results indicate that (3.20) is not a good estimator for the Choptuik ∆

and the good agreement in certain dimensions which was described above should be

considered a coincidence. The results for γ are not very close either. This is not

surprising in view of the differences between the systems both in b.c. and in the DSS

vs. CSS nature of the critical solution.

Regarding a critical dimension their results are less conclusive. No phase transition

to CSS was observed up to 11d, but there are some indications for extrema of the

scaling constants (as a function of dimension) shortly above 11d. Note that the large

d simulations are impeded by a growingly singular behavior at the r̃ = 0 axis.
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